A Quadrature Finite Element Galerkin Scheme for a Biharmonic Problem on a Rectangular Polygon

نویسنده

  • Rakhim Aitbayev
چکیده

A quadrature Galerkin scheme with the Bogner–Fox–Schmit element for a biharmonic problem on a rectangular polygon is analyzed for existence, uniqueness, and convergence of the discrete solution. It is known that a product Gaussian quadrature with at least three-points is required to guarantee optimal order convergence in Sobolev norms. In this article, optimal order error estimates are proved for a scheme based on the product two-point Gaussian quadrature by establishing a relation with an underdetermined orthogonal spline collocation scheme. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 00: 000–000, 2007

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilevel preconditioners for a quadrature Galerkin solution of a biharmonic problem

Efficient numerical algorithms are developed and analyzed that implementmultilevel preconditioners for the solution of the quadrature finite element Galerkin approximation of the biharmonic Dirichlet problem. The quadrature scheme is formulated using the Bogner-Fox-Schmit rectangular element and the product two-point Gaussian quadrature. The proposed additive and multiplicative preconditioners ...

متن کامل

Convergence Analysis of a Quadrature Finite Element Galerkin Scheme for a Biharmonic Problem

A quadrature finite element Galerkin scheme for a Dirichlet boundary value problem for the biharmonic equation is analyzed for a solution existence, uniqueness, and convergence. Conforming finite element space of Bogner-Fox-Schmit rectangles and an integration rule based on the two-point Gaussian quadrature are used to formulate the discrete problem. An H2-norm error estimate is obtained for th...

متن کامل

A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations

This article introduces and analyzes a weak Galerkin mixed finite element method for solving the biharmonic equation. The weak Galerkin method, first introduced by two of the authors (J. Wang and X. Ye) in [52] for second order elliptic problems, is based on the concept of discrete weak gradients. The method uses completely discrete finite element functions and, using certain discrete spaces an...

متن کامل

On Fully Discrete Galerkin Approximations for Partial Integro-differential Equations of Parabolic Type

The subject of this work is the application of fully discrete Galerkin finite element methods to initial-boundary value problems for linear partial integro-differential equations of parabolic type. We investigate numerical schemes based on the Padé discretization with respect to time and associated with certain quadrature formulas to approximate the integral term. A preliminary error estimate i...

متن کامل

A Hybridized Weak Galerkin Finite Element Method for the Biharmonic Equation

This paper presents a hybridized formulation for the weak Galerkin finite element method for the biharmonic equation based on the discrete weak Hessian recently proposed by the authors. The hybridized weak Galerkin scheme is based on the use of a Lagrange multiplier defined on the element interfaces. The Lagrange multiplier is verified to provide a numerical approximation for certain derivative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007